Gaussian process regression with linear inequality constraints
نویسندگان
چکیده
منابع مشابه
Fully fuzzy linear programming with inequality constraints
Fuzzy linear programming problem occur in many elds such as mathematical modeling, Control theory and Management sciences, etc. In this paper we focus on a kind of Linear Programming with fuzzy numbers and variables namely Fully Fuzzy Linear Programming (FFLP) problem, in which the constraints are in inequality forms. Then a new method is proposed to ne the fuzzy solution for solving (FFLP). Nu...
متن کاملFinite-dimensional Gaussian approximation with linear inequality constraints
Introducing inequality constraints in Gaussian process (GP) models can lead to more realistic uncertainties in learning a great variety of real-world problems. We consider the finite-dimensional Gaussian approach from Maatouk and Bay (2017) which can satisfy inequality conditions everywhere (either boundedness, monotonicity or convexity). Our contributions are threefold. First, we extend their ...
متن کاملfully fuzzy linear programming with inequality constraints
fuzzy linear programming problem occur in many elds such as mathematical modeling, control theory and management sciences, etc. in this paper we focus on a kind of linear programming with fuzzy numbers and variables namely fully fuzzy linear programming (fflp) problem, in which the constraints are in inequality forms. then a new method is proposed to ne the fuzzy solution for solving (fflp). ...
متن کاملHierarchical Gaussian Process Regression
We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...
متن کاملLatent Gaussian Process Regression
We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary processes using stationary GP priors. The approach is built on extending the input space of a regression problem with a latent variable that is used to modulate the covariance function over the input space. We show how our approach can be used to model non-stationary process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reliability Engineering & System Safety
سال: 2020
ISSN: 0951-8320
DOI: 10.1016/j.ress.2019.106732